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Issues with RNN

e Sequential computation inhibits parallelization (not like CNN)
e No explicit modeling of long and short range dependencies
e Information bottleneck in the encoder

Long and short range dependencies?
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Attention Mechanism

e Direct connections between words in the encoder and decoder

o A weighted sum of the input (“context vector”) is concatenated to each of

the output words

o The weights are computed from the one-to-one correspondence between

words in the encoder and decoder
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Neural Machine Translation by Jointly Learning to Align and Translate, Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, ICLR, 2015



Self-Attention

e Direct connections can be made between elements within a sequence
o Each input element is transformed into key, query and value via linear

transforms
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“Self-attention layer”
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Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin, 2017



Self-Attention
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Self-Attention

e Direct connections can be made between elements within a sequence
o Each input element is transformed into key, query and value via linear

transforms
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Self-Attention

e Direct connections can be made between elements within a sequence
o Each input element is transformed into key, query and value via linear

transforms
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e We can visualize the interaction of input elements from the self-attention
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Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin, 2017



Attention Mechanism

e Direct connections between words in the encoder and decoder

o A weighted sum of the input (“context vector”) is concatenated to each of

the output words

o The weights are computed from the one-to-one correspondence between

words in the encoder and decoder

“Context vector” > New representation h; in the self-attention case
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Self-Attention

e Multi-head attention
o Multiple independent key, query and value that capture different types of
dependency in the sequence

concatenated
A




Self-Attention

e “Re-representation” of input
o Based on interactions between input elements

e Constant “path length” between two arbitrary positions (unlike RNN)
o Permutation-invariant
o Need to add positional information for sequence modeling

e Trivial to parallelize
o Effective use of GPU

Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin, 2017



Transformer
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Attention Is All You Need, Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, lllia Polosukhin, 2017



Transformer

e Used in the state-of-the-arts models in natural language processing
o Machine Translation
o Language modeling &S . OpenAl

e Used in computed vision as well ‘ ”j I _ m
o Image classification -|II-III SUUH[
o Image generation

175 Parameters

e Recently usedin MIR ;
o Music auto-tagging e
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Vision transformer
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, Alexey Dosovitskiy et al., ICLR, 2020
Semi-Supervised Music Tagging Transformer, Minz Won, Keunwoo Choi, Xavier Serra, ISMIR, 2021



Music Transformer

e How about applying transformer to music generation?

- - —_——
e .. —
'...--'—_'E.'.. N ..:___: . = =
- e o e
——— = -_

PerformanceRNN

. T = . —— —
Primer o e e = ——————  ———
el e—

(“Initial input’) -

Vanilla Transformer

Source: https://magenta.tensorflow.org/music-transformer


https://magenta.tensorflow.org/music-transformer

Transformer for Music Generation

e What's wrong?
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Vanilla Transformer

Source: hitps://magenta.tensorflow.org/music-transformer



https://magenta.tensorflow.org/music-transformer

Self-Similarity in Music

e Music has a motif and it is repeated immediately and also at a distance

84 - ™ ::,'
: qx i ::I L Hl ? ™ " ::u,l
72 = ‘.--;-ll:i ‘| 3 -:I" III "'
: L] -_?": qt.—_":l L1 ) ' ':‘
£ 607 o [, !
- " "aim " ' B l‘
48 - :
36
f
0

Source: Cheng-Zhi Anna Huang



Music Transformer

e Take the advantage of self-similarity in music by using the relative

position instead of the absolute position
o A straightforward way is using a pair-wise distance between two points: the
relative distance becomes 2D
o A 3D tensor is necessary for positional encoding: too much memory !
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Music Transformer, Cheng-Zhi Anna Huang, et al, ICLR, 2019



Music Transformer

e Skewing to reduce relative memory

Per layer, L=2048, D=512
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Music Transformer, Cheng-Zhi Anna Huang, et al, ICLR, 2019



Music Transformer

e Consistent generation!

Primer

(“Initial input’)

Source: hitps://magenta.tensorflow.org/music-transformer

Music Transformer



https://magenta.tensorflow.org/music-transformer

Issues in Music Transformer

e Music transformer does not have a built-in notion of beats/downbeats

e If a time-shift event is generated at a wrong position, the entire notes in

the following time steps are affected and the rhythm becomes unstable
o This is a serious problem in Pop music



Sheet music as multi-element events

e Parse the music notation and tokenize them

o A structured text sequence
m Bar, chord, tempo, note, and so on

o This rich information can be useful in generating more musical output
m But, it may need manual annotations
o No standard method

Bar, Position (1/16), Chord (C major),
Position (1/16), Tempo Class (mid),
Tempo Value (10), Position (1/16),

Note Velocity (16), Note On (60),
— :> Note Duration (4), Position (5/16),
&0 Tempo Value (12), Position (9/16),

Note Velocity (14), Note On (67),
Note Duration (8), Bar

REvamped MIDI-derived events (REMI)

Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions, Yu-Siang Huang, Yi-Hsuan Yang, 2020



Pop Music Transformer

e Revamped MIDI-derived events (REMI): a token representation for pop

music

o Use position & bar (beat & downbeat) instead of time-shift
o Use quantized note-duration instead of note-off

o Add chord & tempo related tokens

| MIDI-like REMI
Not t NOTE-ON NOTE-ON
ote onse 0-127) i
Note offset NOTE-OFF NOTE DURATION
oeomse (0-127) (32th note multiples)

Note velocity

NOTE VELOCITY
(32 bins)

NOTE VELOCITY
32 bins)

Teine axid TIME-SHIFT POSITION (16 bins)
¢ (10-1000ms) & BAR (1)
TEMPO
Tempo changes | X (30-209 BPM)
Chord X CHORD

(60 types)




Pop Music Transformer

e Theinput symbolic representation is designed for pop music which
features steady beats

o Use Transformer-XL instead of the vanilla Transformer

real music  model generates music
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Demo: https://soundcloud.com/yating_ai/sets/ai-piano-generation-demo-202004

Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions, Yu-Siang Huang, Yi-Hsuan Yang, et al, 2019


https://soundcloud.com/yating_ai/sets/ai-piano-generation-demo-202004
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